ANDHRA PRADESH

RECRUITMENT OF ASSISTANT PROFESSORS IN THE UNIVERSITIES SYLLABUS FOR THE SCREENING TEST

MATHEMATICS

SUBJECT CODE – 37

UNIT - 1

Analysis:

Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.

Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem.

Continuity, uniform continuity, Monotonic functions, types of discontinuity, differentiability, mean value theorems. Sequences and series of functions, uniform convergence.

Riemann sums and Riemann integral, Improper Integrals.

Functions of bounded variation, Lebesgue measure, Lebesgue integral.

Functions of several variables, directional derivative, partial derivatives, derivative as a linear transformation, inverse and implicit function theorems.

Metric spaces, compactness, connectedness, Normed linear Spaces, Spaces of continuous functions and examples.

Linear Algebra:

Vector spaces, subspaces, linear dependence and Independence of vectors, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations.

Eigenvalues and Eigenvectors, Cayley-Hamilton theorem.

Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms.

Inner product spaces, orthonormal basis.

Quadratic forms, reduction and classification of quadratic forms

UNIT – 2

Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations.

Contour integrals, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem.

Taylor series, Laurent series, Calculus of residues, Conformal mappings, Mobius transformations.

Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements.

Fundamental theorem of arithmetic, divisibility in \mathbb{Z} , c o n g r u e n c e s Chinese Remainder Theorem, Euler's Ø- function, primitive roots.

Groups, subgroups, Normal subgroups, Quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley's theorem, Class equations, Sylow theorems.

Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria.

Fields, finite fields, field extensions, Galois Theory.

Topology: Basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness.

<u>UNIT – 3</u>

Ordinary Differential Equations (ODEs):

Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs. General theory of homogenous and non-homogeneous linear ODEs, Method of variation of parameters, Sturm-Liouville boundary value problem, Green's function.

Partial Differential Equations (PDEs):

Lagrange and Charpit's methods for solving first order PDEs, Cauchy problem for first order PDEs.

Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Numerical Analysis:

Numerical solutions of algebraic and Transcendental equations, Method of iteration, Regulafalsi method and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss- Seidel methods.

Finite differences, Newton, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs with initial conditions using Picard, Euler, modified Euler and Runge-Kutta methods.

Calculus of Variations:

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems associated with ordinary and partial differential equations.

Linear Integral Equations:

Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigen functions, resolvent kernel.

Classical Mechanics:

Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action, Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.